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ABSTRACT: Small-angle neutron scattering (SANS) is a sensitive technique that is able to
probe the structure of polymer-grafted nanoparticles and free polymer chains. Here, we
combine SANS measurements with self-consistent field theory (SCFT) calculations to
study the structure of deuterated poly(methyl methacrylate) (dPMMA) nanocomposites
containing PMMA-grafted Fe3O4 nanospheres, with a specific emphasis on the
conformation of the PMMA brush chains. We present a new, detailed SANS model
which is able to account for the excluded volume of the grafted polymer chains, and
compare the experimentally measured brush chain conformations to predictions from SCFT calculations for a polymer-grafted
nanosphere, and previous studies by others. The results of the SANS measurements are in qualitative agreement with SCFT
calculations and in excellent quantitative agreement with previous studies that indirectly assessed the structure of the polymer
chains by measuring the hydrodynamic radius of the nanoparticles. Unlike previous methods, however, SANS provides direct
measurements of the polymer brush conformation.

■ INTRODUCTION

Nanoparticles are added to polymer materials to enhance
properties such as optical absorption, Raman scattering, or
electron transport. Their utility in these applications, however,
is determined largely by their distribution within the polymer
matrix. For instance, uniform dispersion and vertical orientation
of CdSe nanorods is key to enhancing electron transport in thin
film polymer photovoltaic devices.1 Because of the prevalence
of polymer nanocomposites in a variety of products and
technologies, a large amount of research effort is dedicated to
understanding fundamental topics related to their fabrication,
processing, and structure−property relationships.
A key issue related to the fabrication and processing of

polymer nanocomposites is the morphology of nanoparticles
within the material. Specifically, under what conditions do the
nanoparticles disperse or aggregate in the material? To
incorporate nanoparticles into a polymer, a polymer brush is
often grafted to the particle surface, which in turn makes the
particles compatible with the polymer matrix. In the athermal
case, where the brush and matrix are chemically similar and the
Flory−Huggins parameter χ ≈ 0, nanoparticle dispersion is
primarily characterized by the ratio of length (i.e., degree of
polymerization) of the matrix chains (P) to that of the brush
chains (N), α = P/N. The values of α that dictate nanoparticle
dispersion or aggregation have received considerable attention
in recent years, and additional details can be found in the recent
reviews from Green2 and Kumar et al.3 for polymer-grafted

nanospheres, and in the work of Hore, Frischknecht, and
Composto for the case of gold nanorods.4−6 Jiao and Akcora7

recently demonstrated that for polymer-grafted Fe3O4 nano-
spheres, a combination of autophobic dewetting and magnetic
interactions leads to further control over the aggregation of
nanoparticles in polymer nanocomposites.
In addition to the influence of brush chain conformation on

nanoparticle dispersion, the conformation of brush chains is an
important characteristic for predicting the diffusion of polymers
within a nanocomposite. Recently, work by Gam et al.8,9 and
Choi et al.10 has demonstrated that polymer diffusion
coefficients in nanocomposites can be collapsed onto a master
curve using the confinement variable ID/2Rg, where ID is the
average interparticle separation in the composite and Rg is the
radius of gyration of the diffusion tracer polymer. For
nanoparticles that have a dense brush of high molecular weight
polymer on their surface, Choi et al. showed that the diffusion
of a tracer within the nanocomposite network is dependent
upon the degree to which the tracer can penetrate the brush.
Thus, ID depends not only on nanoparticle volume fraction,
but also on the conformation of chains within the brush. A
priori, one might also expect the shape of the nanoparticle to
influence ID because of changes in particle−particle separation
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distances as well as changes in the conformation of the polymer
brush chains when grafted to surfaces of various curvatures.
In the work of Alexander11 and de Gennes,12 a polymer chain

grafted to a planar substrate adopts a non-Gaussian
conformation due to crowding effects from its neighbors,
leading to a brush thickness that scales as h ∼ N. Daoud and
Cotton13 extended the Alexander-de Gennes brush model to
the case of star polymers, where all chains are spherically
symmetric about a central grafting point. The crowding of
neighboring chains plays a slightly diminished role in this case,
leading to a weaker scaling with N than in the planar case. This
model has since been extended to describe polymer chains
grafted onto curved, convex surfaces14,17,18 and calculations of
brushes grafted onto convex surfaces have also been performed
using SCFT.21−24 Laradji performed Monte Carlo simulations
of polymers grafted onto curved, fluctuating surfaces, which has
relevance for biomaterials applications.15,16 Recent work from
Ohno et al.17 and Dukes et al.18 has specifically focused on the
structure of polymer chains grafted to spherical nanoparticles at
high grafting densities using dynamic light scattering (DLS)
measurements in solution to study the brush height, h. The
findings of both Ohno et al. as well as Dukes et al. show two
primary regions of the brush. Near the nanoparticle surface, up
to a crossover radius rc, the brush is said to be a concentrated
polymer brush (CPB). Monomers in the CPB regime are highly
crowded, leading to a high degree of stretching in each brush
chain. Here, both Ohno et al.17 and Dukes et al.,18 measured h
∼ n4/5 in the CPB region, where n is the number of polymer
segments within the CPB region. Linear scaling is only
expected for dimensionless grafting densities σ* = a2σ → 1,
thus a smaller scaling exponent was observed (a is the statistical
segment length). Near rc, the brush transitions from the CPB
region to a semidilute polymer brush (SDPB) region, in which
the height scales as h ∼ m3/5 for a degree of polymerization n <
m ≤ N in a good solvent. Monomers in the SDPB regime of the
brush are less crowded, and can adopt a more ideal
conformation. By extending the Daoud−Cotton model, Ohno
et al. obtain the critical radius as

σ ν= * *−r rc core
1/2 1

(1)

where v* = v/(4π)1/2, and ν is the excluded volume parameter
for the polymer chain. Note that rc is the distance from the
center of the nanoparticle to the SDPB region, thus the
thickness of the CPB region is rshell = rc − rcore. The CPB and
SDPB regimes of a highly grafted nanoparticle are shown
schematically in Figure 1. Note that if rcore > rc, the entire brush
is in a SDPB region, and no CPB region exists. More recently,

work from the Bockstaller group19,20 examined the scaling of
the SDPB and CPB regions of densely grafted SiO2
nanoparticles in polymer melts. From analysis of transmission
electron microscopy images, Choi et al.19,20 determined the size
of the CPB region scales as h ∼ n0.8, whereas in a polymer melt,
the SDPB region scales as h ∼ m0.5, indicating that the regions
of the brush chains within the SDPB behave as ideal chains.
This is in contrast to the results of Ohno17 and Dukes et al.18

which demonstrated the SDPB region behaves as a swollen coil
in a good solvent. Note that in all three of these previous
studies, the scaling of the SDPB and CPB regions was
determined indirectly through either image analysis or light
scattering. In this work, small-angle neutron scattering (SANS)
is used to directly measure these length scales for the first time
in a polymer melt.
To date, only a handful of studies have used SANS to

measure polymers grafted to nanoparticles. Chevigny et al.25−27

performed both SANS and small-angle X-ray scattering (SAXS)
measurements on polystyrene-grafted silica particles in solution
and in a homopolymer melt. A key finding was that a core−
shell model is not sufficient to accurately model the scattering
from the nanoparticles used in the study, and a model that
accounts for the grafted chain conformation is needed.25 The
silica particles used in this study had a polystyrene grafting
density of σ = 0.2 chains/nm2 and a molecular weight of Mn =
25 000 g/mol. The SANS intensities were fit using a model
developed by Pedersen to describe scattering from block
copolymer micelles.28 This model assumes a spherical core that
is grafted with ideal, Gaussian chains, and can be extended to
nonspherical cores.29 Recently, Vogiatzis and Theodorou30

performed extensive Monte Carlo simulations of polystyrene-
grafted silica nanoparticles in a polystyrene matrix, and
compared the results to the neutron scattering experiments of
Chevigny et al.26 The Monte Carlo results agree well with the
SANS measurements. Interestingly, the authors note that the
brush thickness, determined from the simulations, depends
only upon the grafting density and brush chain molecular
weight. Hence, no substantial difference in the brush density
profile was observed between high and low molecular weight
matrices. This result is in good agreement with recent SCFT
and DFT results.5 Recent work has also used SANS to
characterize polystyrene-grafted γ-Fe2O3 nanoparticles using a
Gaussian-chain model.31,32

In this paper, spherical, PMMA-grafted iron oxide (Fe3O4)
nanoparticles (radius rcore = 2.5 nm) are investigated. Because
the PMMA is attached to the nanoparticle surface using atom-
transfer radical polymerization (ATRP), a grafting-from
approach, the grafting density is highly uniform as a function
of brush molecular weight. Hence, this system is an ideal model
for studying brush chain conformation on a highly grafted,
highly curved surface, since the grafting density is precisely
controlled. SANS is performed for brushes having molecular
weights of 4, 9, 13, 27, and 36 kg/mol at a fixed grafting density
of σ = 0.73 chains/nm2, corresponding to approximately 60
chains per nanoparticle. Using eq 1, rc for these PMMA-grafted
iron oxide nanoparticles is estimated to be between 5.6 and 7.0
nm. To augment the SANS measurements, self-consistent field
theory (SCFT) calculations are performed to determine the
conformation and excluded volume parameter for an individual
brush chain grafted to a nanoparticle. Finally, we present a
detailed SANS model that does not assume that the grafted
PMMA chains are Gaussian, and which is an appropriate
description for scattering from polymer-grafted nanoparticles in

Figure 1. Schematic representation of a highly grafted nanoparticle
with the concentrated polymer brush (CPB) and semidilute polymer
brush (SDPB) regions. rcore is the radius of the nanoparticle, and rc is
the cutoff distance that separates the CPB and SDPB regions. Rg is the
radius of gyration of the portion of the chain that resides in the SDPB
region.
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non-Θ solvents, in homopolymer melts with specific
interactions, or for stretched polymer chains.

■ THEORETICAL METHODS
SCFT of Polymer-Grafted Nanoparticles. Self-consistent

field theory (SCFT) is a mean field, statistical path integral
framework that has been successful in calculating many
important quantities for polymeric systems. For example, the
phase diagram for block copolymer melts, the interaction
between polymer-grafted nanoparticles in homopolymer melts,
and the structure of polymer brushes in miscible polymer
blends have all been well-described by SCFT.5,21−23,33,34,36 The
partition function for a system of a single polymer-grafted
nanoparticle embedded in a chemically identical homopolymer
melt, containing nb brush chains and nm matrix chains is given
by

∫ ∫∏ ∏

β β

δ ϕ ϕ ϕ

=

− −

× − ̂ − ̂ − ̂

= =
s s

U s U s

R R

R R
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The potential U0 corresponds to a harmonic potential between
monomers, and for an arbitrary chain m is taken to be

∫=
∂
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U R s
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s
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s
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d
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,
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l
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where a is the statistical segment length and Nl is the degree of
polymerization of a chain of type l. The brush chains are grafted
to the nanoparticle surface at a reduced grafting density

σ σ
ρ

* = N
a

6

0 (4)

where 1/ρ0 is the volume of a single monomer. For
hydrogenated PMMA, 1/ρ0 ≈ 0.158 nm3.
Equation 2 is transformed into a partition function described

by an auxiliary field ω+(r) through integral transformations into
a form

∫ ω ω= −+ +exp( [ ])
(5)

with the effective Hamiltonian expressed as

∫ ω ϕ ϕ α= − − −+
−

k TC V
i r Q Qr

1
( ) d ln lnb b m m

B

1

(6)

where C = ρ0V/N. Qb and Qm are the single chain partition
functions of the brush and matrix, respectively.
A mean field approximation is imposed, leading to the

common ″self-consistent field theory″ (SCFT) description of
the nanocomposite system. In this approximation, the
Hamiltonian is assumed to be described by a single
configuration of ω+ at equilibrium, i.e., the functional derivative
δ δω =+/ 0. ω+ is relaxed from its initial random
configuration toward the equilibrium value ω+* by way of a
semi-implicit Seidel scheme (SIS), which has resolution and
stability improvements over a typical explicit Euler scheme.35

The SIS scheme is based upon an expansion of the polymer
density operators using the random phase approximation to

linear order in ω+, and then subtracting and adding the linear
response at the future and current iteration, respectively,

ω ω
ω

ω
ω

−
Δ

= − ∗ − ∂
∂

+ ∗+
+

+
+

+

+
+t

g g
n n

n n
1

1

(7)

The ∗ operator in eq 7 represents a convolution of g and ω+,
which is efficiently implemented in Fourier space as a
multiplication. The kernel g is given as

ϕ ϕ α α= +g k F k F k( ) ( ) ( )b D m D
2 2

(8)

where FD is the Debye function. To aid with convergence, we
enforce a requirement that the spatial average of ω+(r) = 0 by
setting ω+(k = 0) ≡ 0. The time step Δt = 0.5.
Additional details on the numerical methods employed to

solve the field theory are available in a recent publication36 and
a monograph by Fredrickson.34 The SCFT calculations used
the Compute Unified Device Architecture (CUDA) and were
performed on NVIDIA Tesla GPUs (M2070-Q) to reduce
computation time.

Obtaining Chain Conformation from SCFT. To better
compare the SCFT with neutron scattering data, we calculate
the scaling of the mean squared end-to-end distance of a brush
chain for the system described above, in a manner similar to
Schmid37 and Meth.38 The probability of a polymer chain
starting at position r and ending at r′ after N steps is given by
the Green’s function G(r,r′;N), which satisfies a modified
diffusion equation,

ω δ δ∂
∂

− ∇ + * ′ = ′ −+
⎡
⎣⎢

⎤
⎦⎥s

i G N Nr r r r r( ) ( , ; ) ( ) ( )2

(9)

where ω+*(r) is the equilibrated auxiliary field, i.e., the saddle-
point or mean field configuration. In eq 9, the delta functions
enforce the boundary conditions that the chain begins at
position r and that G(r,r′;N) = 0 for N < 0. The mean squared
end-to-end distance of a brush chain anchored at position R0 is
given by

∫
∫

⟨ ⟩ =
−

R
R R G N

G N

R R R

R R R

d ( ) ( , ; )

d ( , ; )N
N N N

N N
0

2 0
2

0

0 (10)

In a similar fashion, the mean squared end-to-end distance
between the anchored chain end and any segment n can be
calculated as

∬
∫

⟨ ⟩ =
− −

R
R R G n G N n

G N

R R R R R R

R R R

d d ( ) ( , ; ) ( , ; )

d ( , ; )n
n N n n n N

N N
0

2 0
2

0

0

(11)

and the mean squared end-to-end distance between a segment
n and the free end of the chain as

∬
∫

⟨ ⟩ =
− −

R
R R G n G N n

G N

R R R R R R

R R R

d d ( ) ( , ; ) ( , ; )

d ( , ; )nN
n N n N n n N

N N

2
2

0

0

(12)

Equation 11 can be interpreted as the mean squared distance
between the anchor point, R0 and segment n for a chain that
begins at R0 and ends at RN after N steps. Similarly, eq 12
represents the mean squared distance between segment n and
the free end of the chain RN subject to the condition that the
chain is anchored at a position R0. Note that this procedure is a
highly computationally intensive problem, as it requires that eq
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9 be solved at each point R0 and Rn to obtain the necessary
Green’s functions.

■ EXPERIMENTAL METHODS
Preparation of Nanocomposites. The synthesis of the Fe3O4

nanospheres was previously detailed.39,40 Hydrogenated poly(methyl
methacrylate) (hPMMA) was grafted from the nanosphere surface
using surface-initiated atom transfer radical polymerization (ATRP).
The resulting polymer brushes had a polydispersity index between 1.1
and 1.2.17,39 Deuterated PMMA matrix polymers with molecular
weight Mn = 29 000 g/mol (Mw/Mn < 1.05) and 88 000 g/mol (Mw/
Mn = 1.2) were obtained from Polymer Source, Inc. (Montreál,
Canada) and used as received. Bulk nanocomposite pellets for small-
angle neutron scattering (SANS) were prepared by combining 50 mg
of iron oxide nanospheres with 300 mg of deuterated poly(methyl
methacrylate) (dPMMA) in toluene, and stirring the solution for
approximately 24 h. After allowing the nanoparticles to dissolve, the
solution was poured into PDMS molds and the toluene allowed to
slowly evaporate over the course of 24 h. Table 1 contains the
parameters for all nanocomposites studied. The grafting density σ was
measured previously by Xu et al.39

Small-Angle Neutron Scattering (SANS) Measurements.
SANS was performed on the NG3 30 m SANS instrument at the
National Institute for Standards and Technology, Center for Neutron
Research (NCNR). Three sample-to-detector distances of 1, 4, and 13
m were used to measure the scattered neutron intensity, dΣ(q)/dΩ, as
a function of scattering variable q = (4π/λ) sin (θ/2), where θ is the
scattering angle and λ is the neutron wavelength (6 Å at 1 and 4 m, 8.4
Å at 13 m).
SANS Analysis: The Core−Shell−Chain Model. The SANS data

were analyzed using a core−shell−chain model, where the core
represents scattering from the inorganic nanoparticle, the shell
represents highly stretched chains in the CPB regime, and the chain
portion is due to scattering from the polymer chains in the SDPB
regime with an excluded volume parameter ν. In other words, this
model makes no assumption that the grafted chains adopt Gaussian
conformations, and thus, is a more flexible model for determining
brush conformation in solution, or homopolymer melts with favorable
Flory−Huggins parameters, χ. The scattering intensity is given by the
sum of four scattering factors. FA(q) is the form factor amplitude of a
core−shell nanoparticle. For the spherical Fe3O4 nanoparticles, FA(q)
is given by

ρ ρ ρ ρ= − + −

+
+

+

⎡
⎣⎢

⎤
⎦⎥

F q V
j qr

qr

V V
j q r r

q r r

( ) ( )
3 ( )

( )

( )
3 [ ( )]

( )
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shell core
core shell

core shell

1

1

(13)

where j1 is a spherical Bessel function, rcore is the nanoparticle core
radius, rshell is the shell thickness, and ρi is the scattering length density
(SLD) of component i. Vcore and Vshell are the volumes of the core and
shell regions, respectively.
The amplitude of correlations between the core−shell particle and

grafted polymer chains are given by FA(q)FB(q), where

=
− −

F q
q R

q R
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1 exp[ ]
B

g

g

2 2

2 2
(14)

and the radius of gyration squared,

ν ν
=

+ +

ν
R

N a
(2 1)(2 2)g

2
2 2

(15)

Interchain and intrachain correlations are given by FB(q)EA
2(q)FB(q)

and PB(q), respectively, where EA(q) = j0[q(rcore + rshell)] is a spherical
Bessel function and

∫= − − ν ν
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6B
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1 2 2
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Hammouda41 performed the integration of eq 16 to obtain

ν
γ
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In eq 17, γ(d,U) is the lower incomplete γ function with the form

∫γ = − −d U t t( , ) d e
U

t d

0

1
(18)

and the variable U = q2a2N2ν/6. With these correlation terms defined,
the scattering cross section (in units of cm−1) for nanoparticles at a
number density NP/V with Ng grafted polymer chains per particle is

Σ
Ω

= + + −

+

q N
V

F q N V F q F q N N V F q

E q F q N V P q S q

d ( )
d

[ ( ) ( ) ( ) ( 1) ( )
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A g B A B g g B B

A B g B B I

2 2

2 2
(19)

For well-dispersed particles, we approximate the interparticle
structure factor term as SI(q) ≈ 1. The polymer chain volume VB =
N/ρ0. The excluded volume parameter ν yields information regarding
the brush chain conformation. For ν ≈ 3/5, the conformation is
described by a self-avoiding random walk, whereas for ν = 1/3 and ν =
1, the conformation is described by a self-attracting walk or a thin rigid
rod, respectively. Note, however, that setting ν = 1 in eq 16 does not
reproduce the correct rigid rod limit, and that the FB(q)EA

2(q)FB(q)
term is approximate. For ν = 1/2, the chain conformation is that of a
pure random walk, and if rshell → 0, eq 19 reduces to Pedersen’s model
for grafted Gaussian chains.28 For each set of SANS data, ν, Rg and rshell
were determined from nonlinear least-squares fitting. rcore was
measured previously by Xu et al.39 using transmission electron
microscopy (TEM). Recall that rc = rcore + rshell (cf., eq 1). The
scattering length densities of the nanoparticles, brush, and matrix are
summarized in Table 2.

■ RESULTS AND DISCUSSION
SCFT Chain Conformation. The effect of α = P/N on the

interaction free energy between pairs of nanospheres has been
studied previously by Xu et al.,24 by Kim and Matsen,21 and,
most recently, by Trombly and Ganesan23 using SCFT in the
context of predicting nanosphere dispersion. Here, only the
structure of the brush chains is considered. Shown in Figure 2
are brush density profiles for nanocomposite systems analogous
to the Fe3O4-27K1 system (σ* = 6.31, red), and one at a lower
reduced grafting density σ* = 1.00 (black). The bottom axis

Table 1. Parameters for Fe3O4 Nanocompositesa

sample ID N P α = P/N σ [nm−2] σ*

*Fe3O4-4K 39 813 21 0.73 2.38
*Fe3O4-9K 90 813 9 0.73 3.62
*Fe3O4-13K 133 813 6 0.73 4.40
Fe3O4-27K1 274 268 1 0.73 6.31
Fe3O4-27K2 274 813 3 0.73 6.31
Fe3O4-35K 357 813 2 0.73 7.21

aThe asterisk denotes nanocomposites where nanoparticles aggre-
gated.

Table 2. Scattering Length Densities for Polymer
Nanocomposite Components

material scattering length density, Å−2 ref

Fe3O4 6.97 × 10−6 42
deuterated PMMA 6.88 × 10−6 43
hydrogenated PMMA 1.05 × 10−6 43
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represents the distance from the grafting surface of the
nanoparticle, r − R0, normalized by the unperturbed radius of
gyration of a brush chain, Rg0 = a(N/6)1/2. Note that according
to eq 4, σ* = 1.00 corresponds to roughly 0.1 chains/nm2. As
σ* increases, the brush density increases due to the larger
number of brush chains that are attached to the nanoparticle
surface. The effect of grafting density on the brush density
profiles can be quantified through the brush height, defined as
the position at which the brush density drops to one-half of its
initial value, ϕb(hb) = 1/2ϕb(0). The height of the brush, hb,
increases from approximately 1.12 Rg0 to 2.36 Rg0 as σ*
increases from 1.00 to 6.31. This effect is due to the fact that
the chains are increasingly stretched due to steric interactions
between the brush chains. Notice that for σ* = 6.31, the brush
chains do not appear to be significantly stretched. If σ* is
increased to 13.48 (not shown), the brush density profile
becomes more step-like, which is indicative of a higher degree
of stretching. In Figure 3, the brush density profiles are shown
for Fe3O4-27K1 (black) and Fe3O4-27K2 (red). For these two

nanocomposites, only the molecular weight of the matrix
polymer varies. Thus, the ratio of the degree of polymerization
of the matrix to that of the brush, α = P/N, varies from 1 for
Fe3O4-27K1 to approximately 3 for Fe3O4-27K2. Only subtle
differences are observed in the density profiles for the two
nanocomposite systems, such as a slight enrichment of the
polymer brush near the nanoparticle surface for α ≈ 3. These
results are in qualitative agreement with similar calculations for
other nanocomposite systems.5,21,23,30 Hence, no significant
differences in the brush chain conformation between the two
nanocomposites are expected to be observed in SANS
measurements.
Chain stretching in the brush can be quantified using the

mathematical formalism of eqs 9−12. In particular, the
excluded volume parameter ν can be obtained from the scaled
end-to-end distance, Ree/Rg0 as

ν =
̃⎡

⎣⎢
⎤
⎦⎥

NR d
n

1
2

log( /2 )
log

ee
2

(20)

where R̃ee
2 = (Ree/Rg0)

2, d is the dimensionality of the
calculation space, and n is an arbitrary position along the
polymer contour, 0 ≤ n ≤ N. ν is representative of chain
crowding, as large values of ν imply a more strongly stretched
polymer chain. The excluded volume parameters for Ree = R0n
and Ree = RnN are shown in Figure 4. Note that the black line in

Figure 4 represents the scaling of the root mean-squared end-
to-end distance between the anchor point at the nanoparticle
surface, and segment n, whereas the red line represents the
scaling of the root mean-squared end-to-end distance between
segment n and the free end of the chain, as depicted
schematically in Figure 4. For example, if n = 40, ⟨R0n

2⟩1/2 ∼
n0.63 and ⟨RnN

2⟩1/2 ∼ (N − n)0.53, as indicated by the dotted line
in Figure 4. Note that the maximum value of ν in the scaling
relationship of ⟨R0n

2⟩1/2 is slightly larger than 0.6, whereas the

Figure 2. Polymer brush density profiles determined from SCFT
calculations corresponding to the Fe3O4-27K1 system (red), and one at
a lower grafting density (black). For both systems, α = P/N = 1.

Figure 3. Polymer brush density profiles determined from SCFT
calculations corresponding to the Fe3O4-27K1 nanocomposite (black),
for which α = 1, and Fe3O4-27K2 (red), for which α = 3. For both
systems, σ* = 6.31.

Figure 4. Excluded volume parameter, ν, determined from SCFT
calculations. The black curve corresponds to the scaling of the end-to-
end distance from the anchor point to the segment at position n (R0n),
whereas the red curve corresponds to the scaling of the end-to-end
distance from position n to the free end of the chain (RnN). For
example, for n = 40, ⟨R0n

2⟩1/2 ∼ n0.63 and ⟨RnN
2⟩1/2 ∼ (N − n)0.53, as

indicated by the dotted line. The parameters σ* = 6.31 and α = 1. R0n
and RnN are depicted schematically in the illustration.
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value of ν in the scaling relationship of ⟨RnN
2⟩1/2 decreases from

approximately 0.57 to 0.50 over the range of n shown in Figure
4. These results represent a weaker degree of stretching of the
brush near the nanoparticle surface than is expected from the
scaling analysis of Ohno et al.17 and Dukes et al.18 If σ* is
increased beyond 6.31, the chains become more stretched as
indicated by a larger maximum value of ν. However, for the
parameters relevant to the experimental system, SCFT predicts
ν ≈ 0.6 in the CPB regime and ν ≈ 0.50 in the SDPB regime.
The profiles from SCFT exhibit a small degree of chain

stretching near the nanoparticle surface, and a scaling of the
remainder of the chain ⟨RnN

2⟩1/2 ∼ Nv where 0.50 ≤ ν ≤ 0.55. A
recent study by Frischknecht et al.5 that compares classical
DFT calculations to SCFT demonstrates that at the same
reduced grafting densities, the density profiles obtained from
SCFT show a lesser degree of stretching as compared to DFT.
However, if the reduced grafting density of the DFT
calculations decreases, or correspondingly, the grafting density
of the SCFT calculations increases, the two profiles are in
excellent agreement. This difference may be due to certain
assumptions in the SCFT or a lack of parameters, such as the
assumption of a very large molecular weight polymer, lack of an
explicit chain length variable, or a poor description of the
polymer chain near the nanoparticle surface, where numerical
divergences in the auxiliary field have been shown to occur.33

Thus, the SCFT results presented in Figures 2−4 likely
underpredict the degree of stretching in the brush, as will be
shown in the following section describing the neutron
scattering measurements Additional work is required to better
connect experimental values of σ with relevant values of σ* in
the SCFT to more accurately model the brush density profile
and brush chain conformation.
SANS of Iron Oxide Nanocomposites. In contrast to the

SCFT results above, small-angle neutron scattering measure-
ments indicate the presence of both a CPB and SDPB region in
the hPMMA brush that is grafted to 2.5 nm iron oxide
nanoparticles. SANS scattering intensities for the Fe3O4-4K,
Fe3O4-9K, and Fe3O4-13K nanocomposites are shown in Figure
5 as a function of scattering variable q. The nanoparticles
comprise 14%, by mass, of the nanocomposite. The power law
observed as q → 0 is indicative of large nanoparticle aggregates.
A peak in the scattering intensity is observed near q = 0.09 Å−1,
corresponding to a length scale of approximately 7 nm. We

attribute this peak to an interparticle structure factor between
aggregated nanoparticles. Note that aggregation is observed for
α = P/N ≥ 6, which is in qualitative agreement with previous
studies by others.2,3,39 The scanning electron microscope
(SEM) image in Figure 6 corroborates the SANS analysis,

and shows large aggregates of nanoparticles. Because of the
scattering from nanoparticle aggregates in these systems, fitting
the SANS intensity to determine the hPMMA brush
conformation is not possible.
Small-angle scattering intensities for the Fe3O4-27K systems

are shown in Figure 7, along with fits using the core−shell−

chain model presented in a previous section. The scattering
intensity is characterized by a tail at small values of q (q < 0.002
Å−1), followed by a Guinier-like region for intermediate values
of q, and finally a tail for q > 0.03 Å−1 due to scattering from the
hPMMA chains. Note that because of the low q tail, a Guinier
region where the scattering intensity I(q) ∼ q0 is not observed.
In the core−shell−chain fits, the scattering length density
(SLD) of the shell was fixed to the value for hPMMA, and
yielded a consistent value of the shell thickness for both Fe3O4-
27K1 and Fe3O4-27K2. The structure obtained from a best fit of

Figure 5. Scattering intensities for Fe3O4-4K (black), Fe3O4-9K (red),
and Fe3O4-13K (blue) showing aggregation of nanoparticles due to
depletion-attractions, since α ≥ 6. Error bars are smaller than the
plotting symbols.

Figure 6. Scanning electron microscopy image of the Fe3O4-4K
nanocomposite. The bright regions correspond to nanoparticle
aggregates.

Figure 7. Scattering intensities for iron oxide nanoparticles with 27
kg/mol hPMMA brushes. (Left) SANS from Fe3O4-27K1. (Right)
SANS from Fe3O4-27K2. The red lines are best fits using the core−
shell−chain model above. For comparison, the blue line for the Fe3O4-
27K1 system is the best fit holding ν = 0.50 fixed. Error bars are smaller
than the plotting symbols.
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the scattered intensity is a spherical iron oxide core with radius
rcore = 2.5 nm surrounded by an hPMMA shell with an
approximate thickness 4 nm. The chains outside of the shell
adopt a radius of gyration Rg ∼ Nv with Rg = 5.406 ± 0.008 nm
and ν = 0.4520 ± 0.0003 for Fe3O4-27K1, Rg = 5.537 ± 0.003
nm and ν = 0.4854 ± 0.0004 for Fe3O4-27K2. Note that the
values of ν are consistent with those obtained for ⟨RnN

2⟩1/2

from SCFT (cf., Figure 4). The SANS intensity for the Fe3O4-
35K system is shown in Figure 8. The best fit, using the core−

shell−chain model, yields similar results to the Fe3O4-27K
systems. In particular, a shell with thickness 3.9 nm is observed,
with the chain size scaling as N0.50 in the SDPB region. Recall
that eq 1 predicts that the CPB region extends approximately
5.6 to 7.0 nm from the nanoparticle center. Thus, the measured
values of rshell yield rc = rcore + rshell ≈ 6.4 nm, which is in
excellent agreement with the scaling predictions in the
literature. Furthermore, eq 1 predicts that the shell thickness
is independent of the degree of polymerization of the brush, N.
For this reason, rshell is expected to be relatively similar for both
the Fe3O4-27K and Fe3O4-35K nanocomposite systems. In
addition, the Gaussian behavior (i.e., ν = 0.5) of the chains in
the SDPB region is in excellent agreement with the
measurements performed by Choi et al. of polystyrene-grafted
silica particles.19,20

The fit parameters for the three nanocomposite systems are
summarized in Table 3. The results for the Fe3O4-27K1 and

Fe3O4-27K2 composites demonstrate that the molecular weight
of the polymer matrix has little influence on the brush chain
conformation, which is good agreement with the SCFT results
in Figure 3 and a previous study.30 Note that while SCFT does
predict a very subtle compression of the brush as α increases
from 1 to 3, this change in polymer density is too small to
resolve in our data. Specifically, the differences between rshell
and Rg for the Fe3O4-27K1 and Fe3O4-27K2 composites are

both on the order of 0.3 nm, implying that within the accuracy
of our measurements, we cannot resolve the small compression
predicted by SCFT. As expected, Rg is larger for the Fe3O4-35K
system due to the larger molecular weight of the brush chains.
In agreement with eq 1, rshell remains relatively constant as the
molecular weight of the brush varies. To the best of our
knowledge, these data represent the first direct measurement of
the CPB and SDPB regions of highly grafted nanoparticles.

■ SUMMARY
In summary, we have conducted small-angle neutron scattering
(SANS) measurements of poly(methyl methacrylate)-function-
alized (PMMA) Fe3O4 nanospheres within a deuterated
PMMA matrix. Unlike previous measurements that relied on
inferring the structure of the polymer brush using dynamic light
scattering (DLS)17,18 or electron microscopy,20,19 the SANS
measurements are able to directly probe the concentrated
polymer brush (CPB) and semidilute polymer brush (SDPB)
regions of the grafted polymer chains. The results of these
measurements are in good agreement with the scaling
arguments presented by Ohno et al.,17 the DLS results from
both Ohno et al. and Dukes et al.,18 as well as measurements by
electron microscopy by Choi et al.20,19 Self-consistent field
theory (SCFT) calculations underestimate chain stretching in
the CPB region of the brush, although they give an approximate
picture of the chain conformation in our nanocomposite
systems. On the other hand, SCFT accurately predicts the
polymer chain conformation in the SDPB region. An open
problem going forward is determing how best to connect
experimental grafting densities with reduced grafting densities
in SCFT to obtain accurate brush density profiles and more
accurate measures of brush chain conformation.
We have extended the small-angle scattering models in the

literature28,29 to describe scattering from a highly grafted
nanoparticle with grafted chains that are not assumed to obey
Gaussian statistics. In this model, the conformation of the brush
chains away from the nanoparticle surface is described by an
excluded volume parameter ν. For an ideal chain ν = 1/2,
whereas ν = 1/3 and ν = 3/5 for collapsed and swollen coils,
respectively. Fits to our SANS data yield values of ν near 1/2,
indicating that the brush chains behave as ideal random walks
in the SDPB region of the brush when in a homopolymer melt.
Going forward, the SANS model presented in this article can be
extended and applied to more complex systems, such as
nonspherical nanoparticles, polymer-grafted nanoparticles in
good or poor solvents, or grafted polyelectrolyte brushes.
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